

TEST REPORT

2020CO1010

DATE OF RECEPTION 06/06/2019

DATE TESTS Starting: 07/06/2019 Ending: 23/09/2019

APPLICANT

ARITEKS BOYACILIK TICATET VE SANAYI AS Hekimsuyu Cad No:36 TR-34250 ISTANBUL

Att. Ibrahim Susin

IDENTIFICATION AND DESCRIPTION OF SAMPLES

REFERENCES ARC PROTECTIVE T-SHIRT

According to the information supplied by the customer: Article number: Aramid D50 Pike-5869 Composition: 93% M-ARAMID 5% P-ARAMID 25 CARBON Weight: 200 - 220 g/m2 Style: Pique knit fabric Color: Navy

TESTS CARRIED OUT

- PRE-TREATMENT FOR DOMESTIC WASHING AND DRYING PROCEDURES FOR TEXTILE TESTING.

- ELECTRIC ARC TEST.

Tests marked with * are not included within the scope of the ENAC accreditation

1/11

0

RESULTS

PRE- TEXT	TREATMEN	T FOR G	DOMESTIC	WASHING	AND	DRYING	PROCEDURES	FOR
Standa ISO 6	ard 6330:2012							
Standa	ard deviation							
Refere Samp	ence ole1 ARC PRC	DTECTIVE	T-SHIRT					
Units		1						
Equip	ment Wascato	or 04123E	12					
Washi	ing procedure	4N Was	hing cycles 5					
Drying C (ho	g procedure prizontal)							
Washing powder ECE detergent 98 + sodium perborate + TAED								
	Units	C	Ory mass of the s	samples		Equ	ipment	
	Units 1	D	0ry mass of the s 2,100 Kg	samples		Equ Wascate	ipment or 04123E12	
Start a 02/07	Units 1 and finish date 7/2019 - 03/07/	/2019	0ry mass of the s 2,100 Kg	amples		Equ Wascate	ipment or 04123E12	
Start a 02/07	Units 1 and finish date 7/2019 - 03/07/	C /2019	0ry mass of the s 2,100 Kg	samples		Equ Wascate	ipment or 04123E12	
Start a 02/07	Units 1 and finish date 7/2019 - 03/07/	/2019	סיין mass of the s 2,100 Kg	samples		Equ Wascate	ipment or 04123E12	
Start a 02/07	Units 1 and finish date 7/2019 - 03/07/	/2019	Dry mass of the s 2,100 Kg	samples		Equ Wascate	ipment or 04123E12	
Start a 02/07	Units 1 and finish date 7/2019 - 03/07	/2019	Dry mass of the s 2,100 Kg	samples		Equ Wascate	ipment or 04123E12	
Start a 02/07	Units 1 and finish date 7/2019 - 03/07,	/2019	סיין mass of the s 2,100 Kg	samples		Equ Wascate	ipment or 04123E12	
Start a 02/07	Units 1 and finish date 7/2019 - 03/07/	/2019	סיין mass of the s 2,100 Kg	samples		Equ Wascate	ipment or 04123E12 ///	
Start a 02/07	Units 1 and finish date 7/2019 - 03/07/	/2019	סיין mass of the s 2,100 Kg	samples		Equ Wascate	ipment or 04123E12	

ELECTRIC ARC TEST

Standard	EN 61482-1-2:2014 equivalent to IEC 61482-1-2:2014
Principle of the Box test method	Determine the behaviour of materials against to thermal risk when exposed to heat energy from electric arc with specific characteristics Materials performance for this procedure is determined from the amount of the heat transmitted through the specimen and other thermal parameters
Sample type	Knitted fabric, navy blue colour with a weight according to the customer of 180 g/m ²

Test conditions				
Class	Class 1			
Testing stanceshow	23,73 ⁰C			
Testing atmosphere	39,50 % RH			
Test current I _{class} for class 1	4 kA ± 5%			
Calibration test current	3892,92 A			
Average direct exposure incident energy E _{io}	153,57 kJ/m ²			
Arc duration	500 ms ± 5%			
Average real arc duration	475,85 ms			
Test voltage	400 V ± 5%			
Average real test voltage	394,4425 V			
Average real Arc Energy W _{arc}	166,29 kJ			

.>>>

RESULTS

ELECTRIC ARC TEST

	Test conditions				
	Gap between	electrodes	(30 ± 1) mm		
	Distance betw	ween the electrodes and sample	(300 ± 5) mm		
Electrodes Electrodes	s type s Cu/Al				
Measurem Temperatu Equivalent Time	ent uncertaint ıre t energy	y 17% of the measured value in ⁰C 17% of the measured value in kJ/m ² ± 0,390 s			
Techniciar David Láz	n performing t aro	he test			
Person ver Lucía Mar	rifying the test rtínez	report			
Pre-treatm 5 washing	ent g cycles at 40°C	, according to standard ISO 6330:2012, method 4N; a	and C drying		
Pre-condit 24h. in ind	ioning of the t door ambient co	est specimens onditions between (18-28)⁰C and between (45-75)% R	۲H		
Starting ar 03/07/201	nd ending pre- 9 - 09/07/201	conditioning date 9			
Observatio	on or deviatior	of the standard	>>>		

_>>>

RESULTS

ELECTRIC ARC TEST

Testing date	09/07/2019
Reference	ARC PROTECTIVE T-SHIRT

VISUALLY OBTEINED DATA

Property	Measurement	Specimen 1	Specimen 2	Specimen 3	Specimen 4
	Class	1	1	1	1
Burning time	Video	0,00 s	0,00 s	0,00 s	0,00 s
Hole formation > 5 mm	Visual	No	No	No	No
Melting through to the inner side	Visual	No	No	No	No
Embrittlement	Visual	No	No	No	No
Damage on the outside	Visual	No	No	No	No
Charring on the outside	Visual	Yes	Yes	Yes	Yes
Dripping	Visual	No	No	No	No
Shrinkage	Calculated	No	No	No	No

RESULTS

ELECTRIC ARC TEST

Reference

ARC PROTECTIVE T-SHIRT

COMPUTER OBTEINED DATA

Class 1					
Broperty	Specimen	Specimen	Specimen	Specimen	
Fioperty	1	2	3	4	
The second state of the state of the second state of the state of the second state of	76,48	83,26	73,32	83,29	
I ransmitted incident energy E _{it}	kJ/m ²	kJ/m ²	kJ/m ²	kJ/m ²	
Time to delta peak temperature t _{max}	29,79 s	29,62 s	29,62 s	29,50 s	
Delta peak temperature Δ ${\rm T_p}$	13,86 °C	15,08 ⁰C	13,28 ⁰C	15,09 ⁰C	
Differences ΔEi of the transmitted energy	-57,91	-50,91	-60,85	-50,72	
values to the Stoll limit value at t _{max}	kJ/m ²	kJ/m ²	kJ/m ²	kJ/m ²	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	-20,33 kJ/m ²	-18,59 kJ/m ²	-18,78 kJ/m ²	-18,11 kJ/m ²	
Excess of the Stoll curve by the heat curve of the transmitted incident energy E_{it} (t)	No	No	No	No	

.>>>

ELECTRIC ARC TEST

Remark

 t_i is the time where the difference between the transmitted incident energy E_{it} and the Stoll Energy E_{iSTOLL} is maximum.

⁽¹⁾ Interpretation: In negative value, a higher difference implies a better behavior. In positive value, a less difference implies a better behavior, considering that the material fails the test.

IN ACCORDANCE WITH THE ACEPTANCE CRITERIA ACCORDING TO EN 61482-1-2:2014, FOR CLASS 1

PASS

Requirement for the standard compliance EN 61482-1-2:2014

a) Burning time ≤ 5 s.

b) No melting through to the inner side.

c) No hole bigger than max. 5 mm. in any direction in the innermost layer.

d) All four pairs of values ($E_{it} - t_{max}$) are below corresponding Stoll values, and all four heat curves E_{it} (t) of transmitted energy are at any moment of time "t" of the exposure period below Stoll curve.

RESULTS

ELECTRIC ARC TEST

Reference

ARC PROTECTIVE T-SHIRT

Original material

Tested material

Remark

The electric arc test is performed in: Cr. Villaviciosa de Odón a Móstoles (M-856) Km. 1,5 Móstoles 28935.

___///

Begoña Pico Head of Public Tenders Division

LIABILITY CLAUSES

1.- AITEX is liable only for the results of the methods of analysis used, as expressed in the report and referring exclusively to the materials or samples indicated in the same which are in its possession, the professional and legal liability of the Centre being limited to these. Unless otherwise stated, the samples were freely chosen and sent by the applicant.

2.- AITEX shall not be liable in any case of misuse of the test materials nor for undue interpretation or use of this document 3.- The Offer and / or Order to which the applicant gives approval through signature and seal, constitutes the Legally Executable Agreement in which AITEX is responsible for safeguarding and guaranteeing the absolute confidentiality of the management of all the information obtained or created during the performance of the contracted activities.

4.- In the eventuality of discrepancies between reports, a check to settle the same will be carried out in the head offices of AITEX. Also, the applicants undertake to notify AITEX of any complaint received by them as a result of the report, exempting this Centre from all liability if such is not done, the periods of conservation of the samples being taken into account.

5.- AITEX is not responsible for the information provided by customers, which is reflected in the Report, and may affect the validity of the results.

6.- AITEX will provide at the request of the person concerned, the treatment of complaints procedure.

7.- AITEX is not responsible for an inadequate state of the sample received that could compromise the validity of the results, expressing such circumstance, in the test reports.

8.- AITEX may include in its reports, analyses, results, etc., any other evaluation which it considers necessary, even when it has not been specifically requested.

9.- When a Declaration of Conformity is requested, if not indicated otherwise, the decision rule will be applied according to ILAC-G8 & ISO 10576-1, in case of ambiguity, or indeterminacy

10.- The uncertainties of tests, which are made explicit in the Results Report, have been estimated for a k = 2 (95% probability of coverage). If not informed, they are available to the client in AITEX.

11. - The original materials and rests of samples, not subject to test, will be retained in AITEX during the twelve months following the issuance of the report, so that any check or claim which, in his case, wanted to make the applicant, should be exercised within the period indicated.

12.- This report may only be sent or delivered by hand to the applicant or to a person duly authorised by the same.

13.- The results of the tests and the statement of compliance with the specification in this report refer only to the test sample as it has been analyzed / tested and not the sample / item which has taken the test sample.

14.- The client must attend at all times, to the dates of the realization of the tests.

15.- According to Resolution EA (33) 31, the test reports must include the unique identification of the sample, and any brand or label of the manufacturer may be added. It is not allowed to re-issue test reports of untested sample names (references), they can only be re-issued for error correction or inclusion of omitted data that were already available at the time of the test. The laboratory can not assume responsibility for declaring that the product with the new trade name / trademark is strictly identical to the one originally tested; This responsibility belongs to the client.